看到cyclone-physics
  用下面的方式算出w(角速度)
  
I = R * I' * R-1
  τ = I α 
w = w + αΔt
  
  
        I' 是Local space 的轉動慣量
        (它是一個矩陣)
      
 
              R 是物件當下的旋轉矩陣
(用來變換到Global space)
              R-1是旋轉矩陣的逆
(用來變換到Local space)
        
衝量F Δt造成動量 ΔP的變化
 
  F Δt = ΔP = m ΔV
左右同除Δt,得到
F = m (ΔV / Δt) =m a
τ Δt造成角動量ΔL的變化
τ = R X F
τ Δt = R X F Δt = ΔL = I Δw
在 Global space
旋轉中的物體,每個時間點 I 都在不停變化
但在Local space
I' 是定值
τ' = I' α'
Global space的轉動慣量
τ 是Global  space 的力矩
α 是Global space 的角加速度
透過座標變換得到
Local 和 Global的關系
τ' = R-1 * τ
代入下式
τ' = I' α' 
可以得到
(R-1 * τ) = I' * (R-1 * α)
左右同乘R
  R * (R-1 * τ) = R * I' * (R-1* α)
  τ = R * I' * R-1 * α
  τ = I * α
可知
  I = R * I' * R-1
就是Globalspace 的轉動慣量
  
計算w的方法
        使用
        τ = I α
        w = w + αΔt
        如果τ = | 0,0,0 |T,α 也會是 | 0,0,0 |T
        那麼 w就不會改變
      
        如果改用   
        L= L+ΔL  
        L = I w
        只要有初始動量,就算之後ΔL =
                  | 0,0,0 |T,w還是會不停的改變
      
備註: